NADPH oxidase-derived reactive oxygen species are involved in the HL-60 cell monocytic differentiation induced by isoliquiritigenin.

نویسندگان

  • Hongmei Chen
  • Bo Zhang
  • Ying Yao
  • Na Chen
  • Xiaoyu Chen
  • Hui Tian
  • Zhenhua Wang
  • Qiusheng Zheng
چکیده

The present study was undertaken to test the hypothesis that NADPH oxidase-derived reactive oxygen species (ROS) are involved in isoliquiritigenin (ISL)-induced monocytic differentiation in human acute promyelocytic leukemia HL-60 cells. Morphological changes, cell surface markers CD11b/CD14 and NBT-reducing ability were used to determine the differentiation of HL-60 cells, and 2,7-dichlorofluorescein (DCFH-DA) was used to detect the level of intracellular ROS. ISL-induced HL-60 cell differentiation was accompanied by an increase in the intracellular ROS levels. l-Buthionine-(S,R)-sulfoximine (BSO), N-acetyl-l-cysteine (NAC), superoxide dismutase (SOD) and 4-hydroxy-2,2,6,6-tetramethylpiperidinoxyl (Tempol) were used to interfere with ROS production. NADPH oxidase inhibitors, apocynin (APO) and diphenyleneiodonium (DPI) were used to study the role of NADPH oxidase in ISL-induced HL-60 cell differentiation. The ISL-induced HL-60 cell differentiation and intracellular ROS generation were enhanced by the oxidant BSO and inhibited by the antioxidants NAC, SOD, and tempol, and were also inhibited by the NADPH oxidase inhibitors APO and DPI. The protein and mRNA expression of the NADPH oxidase subunits gp91phox and p47phox were determined by Western blotting and RT-PCR, respectively. The levels of translation and transcription of the NADPH oxidase subunits gp91phox and p47phox increased markedly in a concentration-dependent manner. These findings suggest that NADPH oxidase plays a critical role in HL-60 cell differentiation induced by ISL and that NADPH oxidase-derived ROS is involved in the differentiation mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O 22: Reactive Oxygen Species and Epilepsy

Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...

متن کامل

Isoprenoid metabolism is required for stimulation of the respiratory burst oxidase of HL-60 cells.

The formation of oxygen radicals by phagocytic cells occurs through the activation of a multiple-component NADPH oxidase system. An unidentified low molecular weight GTP-binding protein has been proposed to modulate the activity of the NADPH oxidase. The low molecular weight GTP-binding proteins undergo posttranslational processing, including an initial covalent incorporation of an isoprenyl gr...

متن کامل

The Importance of Myeloperoxidase in Apocynin-Mediated NADPH Oxidase Inhibition

Apocynin is widely used as an inhibitor of the NADPH oxidase. Since myeloperoxidase (MPO) has been considered as essential for the mechanism of action of apocynin, here we used cells with different levels of MPO and compared their sensitivity to apocynin. HL-60 cells were differentiated with DMSO or IFN γ /TNF α and compared with peripheral mononuclear (PBMC) and polymorphonuclear cells (PMN). ...

متن کامل

NADPH oxidase-derived reactive oxygen species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts.

Reactive oxygen species (ROS) derived from NADPH oxidase (Nox) homologues have been suggested to regulate osteoclast differentiation. However, no bone abnormalities have been documented in Nox1 deficient, Nox2 deficient, or Nox3 mutant mice. During receptor activator of nuclear factor-kappaB ligand (RANKL)-stimulated differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts, m...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2012